Maths at Copperfield

count

sort
count in steps ascending
negative numbers
ten thousands
millions
subitise
represent count in multiples
descending
roman numerals
one hundred thousands
ten millions
order/ordinal
multiples
place value
10 or 100 more 1000 more
powers of
compare

Subject Leadership

CONTENTS

3. Subject Leadership at Copperfield
4. How does the role of Subject Leader fit into Copperfield's Ofsted Statement of Action?
5. Aligning INTENT, IMPLEMENTATION AND IMPACT to the Education Inspection Framework to ensure we meet the criteria for a good quality of education
6. Maths on a Page
7. Long Term Plan
8. Key Assessment Criteria
9. Vocabulary Progression
10. Overview of Maths
11. Monitoring and Evaluation of Maths
12. Evaluation of Monitoring
13. Overview of Progression and Coverage
14. How effective is your leadership and management in driving the Quality of Teaching, Learning and Assessment?
15. Professional Development
16. Frequently asked questions

Subject Leaders at Copperfield

- Subject Leaders provide professional leadership for a subject or group of subjects to secure high-quality first teaching, a rich curriculum and the effective use of resources. The success of this will be measured by the impact on learning and progress for pupils.
- We do not expect Subject Leaders to be an 'expert' in the subject they lead. What is important is that they have the overview of what is going well and what needs to be improved - based on evidence.
- Subject leaders at Copperfield are part of both the Middle Leadership and the Copperfield Extended Leadership Teams
- Each Subject Leader has an assigned Mentor (from SLT)

All Subject Leaders wil

- Be part of our distributed leadership
- Utilise the expertise, passion, pedagogical awareness and strengths of other leadership team members
- Establish a collective responsibility for demonstrating that everyone makes a difference
- Moving the school forward through driving the implementation aspect of each subject
- Professionally develop themselves and other staff team members
- Raise standards across all aspects of the curriculum
- Enrich the curriculum
- Share knowledge, expertise, skill, passion and enthusiasm

How does the role of Subject Leader fit into Copperfield's Ofsted Statement of Action?
The staff, pupils and school community are working on areas identified in the May 2021 Ofsted inspection.
'Leaders are developing their plans to ensure that all areas of the curriculum are equally ambitious and well sequenced. Currently, they are focusing on science and history. Leaders should review existing wider curriculum planning to ensure that essential knowledge is explicitly identified and sequentially mapped out from Nursery to Year 6. For this reason, the transition arrangement has been applied in this case'.
This handbook, along with every other handbook, maps out the sequential curricular links from Nursery to Year 6.
Our Curriculum Statement
Copperfield has an ambitious and aspirational curriculum designed to meet each individual's needs and to give all learners the knowledge and cultural capital they need to succeed in life. Strong teachers have been appointed to key posts within the school. They are aware of national curriculum developments, and pedagogical developments, and a range of strategies are implemented to improve practice, and to better meet the needs of pupils more effectively'

Our Four Drivers, making a well sequenced and ambitious curriculum.
Ethical, informed Individuals.
At Copperfield we aim to build confident, open-minded individuals who feel safe and secure within a caring environment based on mutual respect where everyone is valued and is able to maximise their individual potential. Children from our community may need to develop their self-esteem, confidence and communication skills. An example of this is our comprehensive PSHE curriculum, weekly Values Assembly, and expansive Wellbeing Programme, which all support with self-esteem, independence, perseverance and self-discipline. Our curriculum will also prepare our children to successfully engage with the wider community, as we educate the children on inclusivity and British values. Our 'hands-on' approach to learning in all areas of the curriculum will ensure the children have many opportunities to practice the traits and values they are learning on a daily basis.
Ambitious Capable Learners (Skills and Knowledge).
Our aim is to make learning exciting, enjoyable, relevant and appropriately challenging to build upon what learners already know. Reading is at the heart of our curriculum, it is central to all that we do. Children will read and enjoy a range of books from a myriad of genres. Enriching the children's vocabulary, knowledge and imagination. We also aim for every child to become confident and competent mathematicians, achievable through our maths mastery approach. Beyond the core subjects, the children's knowledge and awareness of how the wider curriculum, such as the arts, humanities, and sports, can be applied in, and have an impact on, their community will be explored. The children will be able to recite key facts and demonstrate their learning of news skills through various forms of outcomes.
Experiences to Inspire
Aware that children seldom explore beyond their very immediate community, our curriculum is designed to broaden the children's horizon. To inspire. The curriculum will be brought alive through hands-on experiences designed to teach and link new skills and knowledge to prior learning. Where possible, the learning will happen beyond the classroom, either on the school grounds, local community or beyond. To enhance their learning for each topic, the children will meet knowledgeable and engaging individuals (virtually or physically) whilst also immerse themselves in the worlds of craft, art, food and sport - taking the learning of skills and knowledge beyond textbooks and into real life experiences. Reach2's 11 b411 has also been embedded into our curriculum, to help enrich the children's learning even further.
Successful in Society
Mindful that some challenges in the local community could have an impact on the children's learning and progress, the school continues to be an outward looking school. Through using the curriculum and resources at our disposal, we openly encourage the parents to engage with, and learn from, the children's curriculum and thus better place them to progress and prosper along with their children. Termly invitations to curriculum days, parent \& teacher curriculum conferences and parent workshops with keynote speakers all come together as a package of support, upskilling and development for parents. This level of support for the support network is designed to elevate the standing of education, increase parental engagement and drive progress in the community. Running throughout the curriculum are our values we embed the 6 values in everything we do.

Aligning INTENT, IMPLEMENTATION AND IMPACT to ensure we meet the criteria for a good quality of education in the Education Inspection Framework

INTENT

Our curriculum is:

- deliberately ambitious
- designed to give all learners, particularly the most disadvantaged and SEND or high needs, the knowledge and cultural capital they need to succeed in life
- coherently planned and sequenced towards cumulatively sufficient knowledge and skills for future learning and employment
- broad and balanced, and allows all pupils access to the full range of subjects, throughout all years, from Nursery to Year 6
- successfully adapted to meet the needs of all learners, especially those with SEND, to develop their knowledge, skills and abilities to apply what they know and can do with increasing fluency and independence

MPLEMENTATION

1. Teachers have good subject knowledge of the subject(s) they teach, and leaders support those teaching outside their main areas of expertise
2. Teachers:

- present subject matter clearly, promoting appropriate discussion about the subject matter they are teaching
- check learners' understanding systematically
- identify misconceptions accurately
- provide clear, direct feedback
- respond, and adapt their teaching as necessary

3. Teaching is designed to help learners to remember in the long-term the content they have been taught, and to integrate new knowledge into larger concepts
4. Teachers and Leaders:

- use assessment well to help learners embed and use knowledge fluently, or to check understanding and inform teaching
- understand the limitations of assessment, and do not use it in a way that creates unnecessary burdens for staff and learners

5. Teachers create an environment that focuses on pupils:

- textbooks and other teaching materials that teachers select - in a way that does not create unnecessary workload for staff - reflect the school's ambitious intentions for the course of study
- materials clearly support the intent of a coherently planned curriculum, sequenced towards cumulatively sufficient knowledge and skills for future learning and employment

6. Work given to pupils is demanding and matches the aims of the curriculum in being coherently planned and sequenced towards cumulatively sufficient knowledge
7. Reading is prioritised to allow pupils to access the full curriculum offer
8. A rigorous and sequential approach to the reading curriculum develops pupils' fluency, confidence and enjoyment in reading:

- At all stages, reading attainment is assessed and gaps are addressed quickly and effectively for all pupils
- Reading books connect closely to the phonics knowledge pupils are taught when they are learning to read

9. The sharp focus on ensuring that younger children gain phonics knowledge and language comprehension necessary to read, and the skills to communicate, gives them the foundations for future learning
10. Teachers ensure that their own speaking, listening, writing and reading of English support pupils in developing their language and vocabulary well

IMPACT

1. Pupils develop detailed knowledge and skills across the curriculum, and as a result achieve well. This is reflected in results from national tests
2. Pupils are ready for the next stage of education:

- they have the knowledge and skills they need to go on to destinations that meet their interests and aspirations, and the course of study
- those with SEND achieve the best possible outcomes

3. Pupils' work across the curriculum is of good quality
4. Pupils:

- read widely and often, with fluency and comprehension appropriate to their age
- apply mathematical knowledge, concepts and procedures, appropriately for their age

The Copperfield Way

 MATHS
Statement of Intent

Our aim at Copperfield Academy is for all children to enjoy mathematics and have a secure and deep understanding of fundamental mathematical concepts and procedures when they leave us to go to secondary school. We want children to see the mathematics that surrounds them every day and enjoy developing vital life skills in this subject.

Aims for our pupils

- To develop a growth mindset and positive attitude towards mathematics.
- To become confident and proficient with number, including fluency with mental calculation and look for connections between numbers.
- To become problem solvers, who can reason, think logically, work systematically and apply their knowledge of mathematics.
- To develop their use of mathematical language.
- To become independent learners and to work co-operatively with others.
- To appreciate real life contexts to learning in mathematics.

Implementation

Our teaching for mastery is underpinned by the NCETM's 5 Big Ideas.

- Opportunities for Mathematical Thinking allow children to make chains of reasoning connected with the other areas of their mathematics.
- A focus on Representation and Structure ensures concepts are explored using concrete, pictorial and abstract representations, the children actively look for patterns and generalise whilst problem solving.
- Coherence is achieved through the planning of small, connected steps to link every question and lesson within a topic.
- Teachers use both procedural and conceptual Variation within their lessons and there remains an emphasis on Fluency with a relentless focus on number and times table facts

Impact

- It is achievable for all - we have high expectations and encourage a positive 'can do' mindset towards mathematics in all pupils, creating learning experiences which develop children's resilience in the face of a challenge and carefully scaffolding learning so everyone can make progress
- Deep and sustainable learning - lessons are designed with careful small steps, questions and tasks in place to ensure the learning is not superficial.
- The ability to build on something that has already been sufficiently mastered - pupils' learning of concepts is seen a continuum across the school.
- The ability to reason about a concept and make connections - pupils are encouraged to make connections and spot patterns between different concepts (E.g. the link between ratio, division and fractions) and use precise mathematical language, which frees up working memory and deepens conceptual understanding.
- Conceptual and procedural fluency - teachers move mathematics from one context to another (using objects, pictorial representations, equations and word problems). There are high expectations for pupils to learn times tables, key number facts (so they are automatic) and have a true sense of number. Pupils are also encouraged to think whether their method for tackling a given calculation or problem is Appropriate, Reliable and Efficient (A.R.E).
- Problem solving is central - this develops pupils' understanding of why something works so that they truly have an appreciation of what they are doing rather than just learning to repeat routines without grasping what is happening.
- Challenge through greater depth - rather than accelerated content, (moving onto next year's concepts) teachers set tasks to deepen knowledge and improve reasoning skills within the objectives of their year group.
- Mathematical language - The national curriculum requires that children use mathematical language. It states that 'the quality and variety of language that pupils hear and speak are key factors in developing their mathematical vocabulary and presenting a mathematical justification, argument or proof.

Reception

Week 1 Week 2 Week 3

Getting to know you
Take this time to play and get to know the children!)

Contains overviews and frequently asked questions

VIEW

Alive in 5!

Introducing zero
Comparing numbers to 5
Composition of 4 \& 5
Compare mass (2)
Compare capacity (2)

To 20 and beyond

Build numbers beyond 10
Count patterns beyond 10
Spatial reasoning 1
Match, rotate, manipulate

VIEW

Just like me!

Match and sort
Compare amounts
Compare size, mass \&
capacity
Exploring pattern
VIEW

Growing 6, 7, 8

6. 7 \& 8

Combining two amounts
Making pairs
Length \& height
Time (2)
VIEW

First, then, now

Adding more
Taking away
Spatial reasoning 2
Compose and decompose

VIEW

It's me 1, 2, 3!
Representing 1, 2 \& 3
Comparing 1. 2 \& 3
Composition of 1, 2 \& 3
Circles and triangles
Positional language
VIEW

Building 9 \& 10

Counting to $9 \& 10$
Comparing numbers to 10
Bonds to 10
3-D shapes
Spatial awareness
Patterns
VIEW

Find my pattern

 DoublingSharing \& grouping
Even \& odd
Spatial reasoning 3 Visualise and build

Light \& dark

Representing numbers to 5
One more or less
Shapes with 4 sides
Time

Consolidation

On the move

Deepening understanding Patterns \& relationships Spatial mapping (4) Mapping

Year 1

Year 2

	Week 1 Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
	Number			Number					Geomerty		
¢	Place value			Addition and subtraction					Shap		
	VIEW						VEW				VIEW
$\begin{aligned} & E \\ & \vdots \\ & \text { on } \\ & \text { in } \\ & \text { í } \end{aligned}$	Measurement	Number					Measurement		Measure		
	Money	Multiplication and division					Length and height		Mass, temp	apacit ature	
	VIEW					VIEW		VIEW			VEW
	Number		Measurement			Statistics		Geomerry			
	Fractions		Time					Posi and dire		Cons	
		view			VIEW		VIEW		VIEW		

Year 3

Year 4

Year 5

Year 6

KEY ASSESSMENT CRITERIA
Development Matters - Number

Shape Space and Measure

	A Unique Child: observing what a child is learning
30-50 months	- Shows an interest in shape and space by playing with shapes or making arrangements with objects. - Shows awareness of similarities of shapes in the environment. - Uses positional language. - Shows interest in shape by sustained construction activity or by talking about shapes or arrangements. - Shows interest in shapes in the environment. - Uses shapes appropriately for tasks. - Beginning to talk about the shapes of everyday objects, e.g. 'round' and 'tall'.
40-60+ months	- Beginning to use mathematical names for 'solid' 3D shapes and 'flat' 2D shapes, and mathematical terms to describe shapes. - Selects a particular named shape. - Can describe their relative position such as 'behind' or 'next to'. - Orders two or three items by length or height. - Orders two items by weight or capacity. - Uses familiar objects and common shapes to create and recreate patterns and build models. - Uses everyday language related to time. - Beginning to use everyday language related to money. - Orders and sequences familiar events. - Measures short periods of time in simple ways. Early Learning Goal Children use everyday language to talk about size, weight, capacity, position, distance, time and money to compare quantities and objects and to solve problems. They recognise, create and describe patterns. They explore characteristics of everyday objects and shapes and use mathematical language to describe them.

Ready-to-progress criteria: year 1 to year 6

The table below is a summary of the ready-to-progress criteria for all year groups.

Strand	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
NPV	1NPV-1 Count within 100, forwards and backwards, starting with any number.		3NPV-1 Know that 10 tens are equivalent to 1 hundred, and that 100 is 10 times the size of 10 ; apply this to identify and work out how many 10s there are in other threedigit multiples of 10 .	4NPV-1 Know that 10 hundreds are equivalent to 1 thousand, and that 1,000 is 10 times the size of 100 ; apply this to identify and work out how many 100s there are in other four-digit multiples of 100 .	5NPV-1 Know that 10 tenths are equivalent to 1 one, and that 1 is 10 times the size of 0.1 . Know that 100 hundredths are equivalent to 1 one, and that 1 is 100 times the size of 0.01 . Know that 10 hundredths are equivalent to 1 tenth, and that 0.1 is 10 times the size of 0.01 .	6NPV-1 Understand the relationship between powers of 10 from 1 hundredth to 10 million, and use this to make a given number 10, 100, 1,000, 1 tenth, 1 hundredth or 1 thousandth times the size (multiply and divide by 10 , 100 and 1,000).
		2NPV-1 Recognise the place value of each digit in two-digit numbers, and compose and decompose two-digit numbers using standard and nonstandard partitioning.	3NPV-2 Recognise the place value of each digit in three-digit numbers, and compose and decompose three-digit numbers using standard and non-standard partitioning.	4NPV-2 Recognise the place value of each digit in four-digit numbers, and compose and decompose four-digit numbers using standard and nonstandard partitioning.	5NPV-2 Recognise the place value of each digit in numbers with up to 2 decimal places, and compose and decompose numbers with up to 2 decimal places using standard and nonstandard partitioning.	6NPV-2 Recognise the place value of each digit in numbers up to 10 million, including decimal fractions, and compose and decompose numbers up to 10 million using standard and nonstandard partitioning.
	1NPV-2 Reason about the location of numbers to 20 within the linear number system, including comparing using < > and $=$	2NPV-2 Reason about the location of any twodigit number in the linear number system, including identifying the previous and next multiple of 10 .	3NPV-3 Reason about the location of any threedigit number in the linear number system, including identifying the previous and next multiple of 100 and 10 .	4NPV-3 Reason about the location of any fourdigit number in the linear number system, including identifying the previous and next multiple of 1,000 and 100 , and rounding to the nearest of each.	5NPV-3 Reason about the location of any number with up to 2 decimals places in the linear number system, including identifying the previous and next multiple of 1 and 0.1 and rounding to the nearest of each.	6NPV-3 Reason about the location of any number up to 10 million, including decimal fractions, in the linear number system, and round numbers, as appropriate, including in contexts.

Strand	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
NPV			3NPV-4 Divide 100 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 100 with $2,4,5$ and 10 equal parts.	4NPV-4 Divide 1,000 into $2,4,5$ and 10 equal parts, and read scales/number lines marked in multiples of 1,000 with $2,4,5$ and 10 equal parts.	$5 \mathrm{NPV}-4$ Divide 1 into 2 , 4,5 and 10 equal parts, and read scales/number lines marked in units of 1 with $2,4,5$ and 10 equal parts.	$6 \mathrm{NPV}-4$ Divide powers of 10, from 1 hundredth to 10 million, into $2,4,5$ and 10 equal parts, and read scales/number lines with labelled intervals divided into $2,4,5$ and 10 equal parts.
					5NPV-5 Convert between units of measure, including using common decimals and fractions.	
NF	1NF-1 Develop fluency in addition and subtraction facts within 10.	2NF-1 Secure fluency in addition and subtraction facts within 10, through continued practice.	3NF-1 Secure fluency in addition and subtraction facts that bridge 10 , through continued practice.			
	1NF-2 Count forwards and backwards in multiples of 2,5 and 10, up to 10 multiples, beginning with any multiple, and count forwards and backwards through the odd numbers.		3NF-2 Recall multiplication facts, and corresponding division facts, in the 10, 5, 2, 4 and 8 multiplication tables, and recognise products in these multiplication tables as multiples of the corresponding number.	4NF-1Recall multiplication and division facts up to 12×12, and recognise products in multiplication tables as multiples of the corresponding number.	5NF-1 Secure fluency in multiplication table facts, and corresponding division facts, through continued practice.	
				$4 \mathrm{NF}-2$ Solve division problems, with two-digit dividends and one-digit divisors, that involve remainders, and interpret remainders appropriately according to the context.		
			3NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 10).	$4 \mathrm{NF}-3$ Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 100)	5NF-2 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 1 tenth or 1 hundredth).	

Strand	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
AS	1AS-1 Compose numbers to 10 from 2 parts, and partition numbers to 10 into parts, including recognising odd and even numbers.	2AS-1 Add and subtract across 10 .	3AS-1 Calculate complements to 100.			6AS/MD-1 Understand that 2 numbers can be related additively or multiplicatively, and quantify additive and multiplicative relationships (multiplicative relationships restricted to multiplication by a whole number).
	1AS-2 Read, write and interpret equations containing addition (+), subtraction (-) and equals ($=$) symbols, and relate additive expressions and equations to real-life contexts.	2AS-2 Recognise the subtraction structure of 'difference' and answer questions of the form, "How many more...?".	3AS-2 Add and subtract up to three-digit numbers using columnar methods.			6AS/MD-2 Use a given additive or multiplicative calculation to derive or complete a related calculation, using arithmetic properties, inverse relationships, and place-value understanding.
		2AS-3 Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract only ones or only tens to/from a twodigit number.	3AS-3 Manipulate the additive relationship: Understand the inverse relationship between addition and subtraction, and how both relate to the part-part-whole structure. Understand and use the commutative property of addition, and understand the related property for subtraction.			6AS/MD-3 Solve problems involving ratio relationships.
		2AS-4 Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract any 2 twodigit numbers.				6AS/MD=4 Solve problems with 2 unknowns.

Strand	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
MD		2MD-1 Recognise repeated addition contexts, representing them with multiplication equations and calculating the product, within the 2, 5 and 10 multiplication tables.	3MD-1 Apply known multiplication and division facts to solve contextual problems with different structures, including quotitive and partitive division.	4MD-1 Multiply and divide whole numbers by 10 and 100 (keeping to whole number quotients); understand this as equivalent to making a number 10 or 100 times the size.	$5 \mathrm{MD}-1$ Multiply and divide numbers by 10 and 100; understand this as equivalent to making a number 10 or 100 times the size, or 1 tenth or 1 hundredth times the size.	For year 6, MD ready-toprogress criteria are combined with AS ready-to-progress criteria (please see above).
		2MD-2 Relate grouping problems where the number of groups is unknown to multiplication equations with a missing factor, and to division equations (quotitive division).		4MD-2 Manipulate multiplication and division equations, and understand and apply the commutative property of multiplication.	$5 \mathrm{MD}-2$ Find factors and multiples of positive whole numbers, including common factors and common multiples, and express a given number as a product of 2 or 3 factors.	
				$4 \mathrm{MD}-3$ Understand and apply the distributive property of multiplication.	$5 \mathrm{MD}-3$ Multiply any whole number with up to 4 digits by any one-digit number using a formal written method.	
					5MD-4 Divide a number with up to 4 digits by a one-digit number using a formal written method, and interpret remainders appropriately for the context.	

Strand	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
F			$3 \mathrm{~F}-1$ Interpret and write proper fractions to represent 1 or several parts of a whole that is divided into equal parts.			6F-1 Recognise when fractions can be simplified, and use common factors to simplify fractions.
			$3 \mathrm{~F}-2$ Find unit fractions of quantities using known division facts (multiplication tables fluency).		$5 \mathrm{~F}-1$ Find non-unit fractions of quantities.	6F-2 Express fractions in a common denomination and use this to compare fractions that are similar in value.
			3F-3 Reason about the location of any fraction within 1 in the linear number system.	4F-1 Reason about the location of mixed numbers in the linear number system.		6F-3 Compare fractions with different denominators, including fractions greater than 1 , using reasoning, and choose between reasoning and common denomination as a comparison strategy.
				4F-2.Convert mixed numbers to improper fractions and vice versa.	5F-2 Find equivalent fractions and understand that they have the same value and the same position in the linear number system.	
			3F-4 Add and subtract fractions with the same denominator, within 1.	4F-3 Add and subtract improper and mixed fractions with the same denominator, including bridging whole numbers.	$5 \mathrm{~F}-3$ Recall decimal fraction equivalents for $\frac{1}{2}, \frac{1}{4}, \frac{1}{5}$ and $\frac{1}{10}$, and for multiples of these proper fractions.	
G	1G-1 Recognise common 2D and 3D shapes presented in different orientations, and know that rectangles, triangles, cuboids and pyramids are not always similar to one another.	2G-1 Use precise language to describe the properties of 2D and 3D shapes, and compare shapes by reasoning about similarities and differences in properties.	3G-1 Recognise right angles as a property of shape or a description of a turn, and identify right angles in 2D shapes presented in different orientations.		5G-1 Compare angles, estimate and measure angles in degrees (${ }^{\circ}$) and draw angles of a given size.	

Strand	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
G					5G-2 Compare areas and calculate the area of rectangles (including squares) using standard units.	
	1G-2 Compose 2D and 3D shapes from smaller shapes to match an example, including manipulating shapes to place them in particular orientations.		3G-2 Draw polygons by joining marked points, and identify parallel and perpendicular sides.	4G-1 Draw polygons, specified by coordinates in the first quadrant, and translate within the first quadrant.		6G-1 Draw, compose, and decompose shapes according to given properties, including dimensions, angles and area, and solve related problems.
				4G-2 Identify regular polygons, including equilateral triangles and squares, as those in which the side-lengths are equal and the angles are equal. Find the perimeter of regular and irregular polygons.		
				4G-3 Identify line symmetry in 2D shapes presented in different orientations. Reflect shapes in a line of symmetry and complete a symmetric figure or pattern with respect to a specified line of symmetry.		

Mathematics Vocabulary Progression document (YR-Y6)

This document is designed to assist with the teaching of vocabulary across EYFS, KS1 and KS2 and is aligned with the White Rose schemes of learning, R2 long-term overviews and R2 knowledge organisers. The words in bold signify in which year group this vocabulary should be introduced to the children. However, these words should be consolidated and revisited as children move through the school. This version carries the words over into the subsequent year groups, there is a scaled down version available also.

Some vocabulary might be introduced earlier (shapes for instance) if necessary or as part of an activity, however this document ensures coverage is progressive. There is also some language that is only listed in Reception and not continued, as it is more general tier 1 vocabulary. This document is fully editable so language can be moved into earlier or later year groups where necessary.

Number - Number and place value						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
count						
subitise						
	sort	sort	sort	sort	sort	sort
		count in steps				
		count in multiples				
	represent	represent	represent	represent	represent	represent
order/ordinal						
			ascending	ascending	ascending	ascending
			descending	descending	descending	descending
				negative numbers	negative numbers	negative numbers
				Roman numerals	Roman numerals	Roman numerals
compare						
forwards						
backwards						
numerals						
digit						
	multiples	multiples	multiples	multiples	multiples	multiples
one more						
one less						
			10 or 100 more			
			10 or 100 less			
				1000 more	1000 more	1000 more

				1000 less	1000 less	1000 less
equal to						
more than						
less than (fewer)						
		place value				
	partitioning	partitioning	partitioning	partitioning	partitioning	partitioning
	ones	ones	ones	ones	ones	ones
	tens	tens	tens	tens	tens	tens
			hundreds	hundreds	hundreds	hundreds
				thousands	thousands	thousands
					ten thousands	ten thousands
					one hundred thousands	one hundred thousands
						millions
						ten millions
		estimate	estimate	estimate	estimate	estimate
		compare	compare	compare	compare	compare
				round	round	round
					powers of	powers of
					integer	integer

Addition and subtraction						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
add	addition/add	addition/add	addition/add	addition/add	addition/add	addition/add
plus						
altogether						
total						
		sum	sum	sum	sum	sum
take away /minus	take away /minus	take away / minus	take away /minus	take away /minus	take away / minus	take away /minus
	subtraction	subtraction	subtraction	subtraction	subtraction	subtraction
	difference	difference	difference	difference	difference	difference
	equals	equals	equals	equals	equals	equals
number bonds						
	facts	facts	facts	facts	facts	facts
part						
whole						
	problems	problems	problems	problems	problems	problems
	missing number problems					
digit						
	2 digit number	2-digit number				
		3-digit number				

			4-digit number	4-digit number	4-digit number
	commutative	commutative	commutative	commutative	commutative
inverse	inverse	inverse	inverse	inverse	inverse
		column addition	column addition	column addition	column addition
		column subtraction	column subtraction	column subtraction	column subtraction
		exchange	exchange	exchange	exchange
		estimate	estimate	estimate	estimate
			operations	operations	operations
			methods	methods	methods

Multiplication and division						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	multiplication	multiplication	multiplication	multiplication	multiplication	multiplication
double						
half						
	division	division	division	division	division	division
equal						
unequal						
share						
group						
	arrays	arrays	arrays	arrays	arrays	arrays
		multiplication tables				
odd						
even						
		commutative	commutative	commutative	commutative	commutative
		repeated addition				
twice as many			exchange	exchange	exchange	exchange

Fractions/Decimals/Percentages						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
whole						
half						
	quarter	quarter	quarter	quarter	quarter	quarter
		three quarters				
		third	third	third	third	third
					fifth	fifth
	equal parts					
				decimal equivalence	decimal equivalence	decimal equivalence
				decimal point	decimal point	decimal point
			tenths	tenths	tenths	tenths
				hundredths	hundredths	hundredths
					thousandths	thousandths
		unit fractions				
		non-unit fractions				
		numerator	numerator	numerator	numerator	numerator
		denominator	denominator	denominator	denominator	denominator
		equivalent fractions				
		one whole				
				convert	convert	convert
				proper fractions	proper fractions	proper fractions
				improper fractions	improper fractions	improper fractions
					mixed numbers	mixed numbers
					per cent \%	per cent \%
					factors	factors
					integer	integer

				complements	complements	
Ratio and proportion						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
						relative size
						missing values
						integer multiplication
						percentages
						scale factor
						unequal sharing \& grouping

Algebra						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
						formulae
						linear number sequences
						algebraically
						equation
						unknowns
						combinations
						variables

Measurement (Measure and Length)						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
measure						
wide(er)		standard units				
narrow(er)		estimate	estimate	estimate	estimate	estimate
compare						
long(er)(est)		order	order	order	order	order
short(er)(est)		record results				
					decimal notation	decimal notation
					scaling	scaling
					metric units	metric units
					imperial units	imperial units
					inches	inches
						feet
						conversion
length						
		centimetre cm				
		metre m				
			millimetre mm	millimetre mm	millimetre mm	millimetre mm
			perimeter	perimeter	perimeter	perimeter
				kilometres km	kilometres km	kilometres km
						miles
				rectilinear figure	rectilinear figure	rectilinear figure
				area	area	area

Measurement (Height, Weight and Capacity)						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
height						
long(er)/short(er)						
tall(er)/short(er)						
	mass	mass	mass	mass	mass	mass
weight						
heavy/light						
heavier than						
lighter than						
big/bigger/biggest		kilogram kg				
		gram g				
capacity						
	volume	volume	volume	volume	volume	volume
full/empty						
more than						
less than						
half/half full						
		quarter full				
		three-quarters full				

Measurement (Time)						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
time						
quicker						
slower						
earlier						
later						
	chronological order					
before						
after						

| first |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| next |
| today |
| yesterday |
| tomorrow |
| morning |
| afternoon |
| evening |
| | days of the week |
| | months of the year |
| day |
| week |
	month	month	month	month	month	month
	year	year	year	year	year	year
	o'clock	o'clock	o'clock	o'clock	o'clock	o'clock
	half past					
hour						
minutes	minute	minute	minute	minute	minute	minute
	second	second	second	second	second	second
		intervals of time				
		quarter past/to				
			analogue clock	analogue clock	analogue clock	analogue clock
			Roman numerals	Roman numerals	Roman numerals	Roman numerals
			12-hour clock	12-hour clock	12-hour clock	12-hour clock

		24-hour clock	24-hour clock	24-hour clock	24-hour clock
		a.m./p.m.	a.m./p.m.	a.m./p.m.	a.m./p.m.
		noon	noon	noon	noon
		midnight	midnight	midnight	midnight
		leap year	leap year	leap year	leap year
	duration	duration	duration	duration	duration
		digital	digital	digital	digital
			convert	convert	convert

Measurement (Money)						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	money	money	money	money	money	money
	coins	coins	coins	coins	coins	coins
	notes	notes	notes	notes	notes	notes
	pounds $£$					
	pence p	pence p	pence p	pence p	pence p	pence p
		value	value	value	value	value
		change	change	change	change	change

Geometry - Properties of Shape						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
2-d shapes						
rectangle						
square						
circle						

| triangle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | right-angle triangle | right-angle triangle | right-angle triangle | right-angle triangle |
| | | | | isosceles | isosceles | isosceles |
| | | | | equilateral | equilateral | equilateral |
| | | | | scalene | scalene | scalene |
| | | pentagon | pentagon | pentagon | pentagon | pentagon |
| | | hexagon | hexagon | hexagon | hexagon | hexagon |
| | | | heptagon | heptagon | heptagon | heptagon |
| | | | octagon | octagon | octagon | octagon |
| | | | polygon | polygon | polygon | polygon |
| | | | | trapezium | trapezium | trapezium |
| | | | | rhombus | rhombus | rhombus |
| | | | | parallelogram | parallelogram | parallelogram |
| | | | | kite | kite | kite |
| | sides | sides | sides | sides | sides | sides |
| | corners | corners | corners | corners | corners | corners |
| | | line of symmetry |
| | | | | geometric shapes | geometric shapes | geometric shapes |
| | | | | quadrilaterals | quadrilaterals | quadrilaterals |
| characteristics | properties | properties | properties | properties | properties | properties |
| 3-d shapes |
| cuboids |
| cubes |
| cone |
| | pyramids | pyramids | pyramids | pyramids | pyramids | pyramids |
| spheres |
| | | cylinder | cylinder | cylinder | cylinder | cylinder |

		edges	edges	edges	edges	edges
		vertices	vertices	vertices	vertices	vertices
		vertex	vertex	vertex	vertex	vertex
	faces	faces	faces	faces	faces	faces
			prism	prism	prism	prism
						radius
						diameter
						circumference
					regular polygon	regular polygon
					irregular polygon	irregular polygon
						dimensions
curved						
straight						
flat						

Geometry - Properties of shape (2)						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
			orientations	orientations	orientations	orientations
			angles	angles	angles	angles
			acute angle	acute angle	acute angle	acute angle
			obtuse angle	obtuse angle	obtuse angle	obtuse angle
					reflex angles	reflex angles
					degrees	degrees
					one whole turn	one whole turn
					angles on straight line	angles on straight line
					angles around a point	angles around a point

					vertically opposite	vertically opposite
					missing angles	missing angles
			turn	turn	turn	turn
			right angles	right angles	right angles	right angles
			half turn	half turn	half turn	half turn
			three quarters of a turn			
			greater than right angle			
			less than right angle			
			horizontal lines	horizontal lines	horizontal lines	horizontal lines
			vertical lines	vertical lines	vertical lines	vertical lines
			perpendicular lines	perpendicular lines	perpendicular lines	perpendicular lines
			parallel lines	parallel lines	parallel lines	parallel lines

Geometry - Position and direction						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
over	position	position	position	position	position	position
under	direction	direction	direction	direction	direction	direction
between	movement	movement	movement	movement	movement	movement
around	whole turn					
through	quarter turn					
on	half turn					
into	three-quarter turn					

next to		clockwise/anticlockwise	clockwise/anti-clockwise	clockwise/anti-clockwise	clockwise/anti-clockwise	clockwise/anti-clockwise
behind		straight line				
beneath		rotation	rotation	rotation	rotation	rotation
order						
repeat		arrange	arrange	arrange	arrange	arrange
patterns						
on top of		sequences	sequences	sequences	sequences	sequences
				co-ordinates	co-ordinates	co-ordinates
				first quadrant	first quadrant	first quadrant
						four quadrants
				grid	grid	grid
				translation	translation	translation
				plot	plot	plot
				polygon	polygon	polygon
					reflection	reflection
				axis	axis	axis
						co-ordinate plane

Statistics						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		pictograms	pictograms	pictograms	pictograms	pictograms
		tally chart				
		block diagram				
			table	table	table	table
					timetable	timetable
			bar chart	bar chart	bar chart	bar chart

			time graph	time graph	time graph
			discrete data	discrete data	discrete data
			continuous data	continuous data	continuous data
			line graph	line graph	line graph
				two-way tables	two-way tables
					pie chart
	category	category	category	category	category
	sorting	sorting	sorting	sorting	sorting
	totalling	totalling	totalling	totalling	totalling
	comparing	comparing	comparing	comparing	comparing
			comparison problem	comparison problem	comparison problem
			sum problem	sum problem	sum problem
			difference problem	difference problem	difference problem
		one-step problem	one-step problem	one-step problem	one-step problem
		two-step problem	two-step problem	two-step problem	two-step problem
			calculate	calculate	calculate
			interpret	interpret	interpret
					mean
	horizontal	horizontal	horizontal	horizontal	horizontal
	vertical	vertical	vertical	vertical	vertical

OVERVIEW OF SUBJECT/MONITORING/PROGRESSION/COVERAGE AND OUTCOMES

- Has the school made the objectives of their curriculum clear for your subject?
- Does the school's curriculum for your subject align with national policy and statutory requirements?
- How do you know your curriculum is working? Can you demonstrate how you know?
- Why is the curriculum right for the children in your school at this time?
- What are the strengths of your current subject curriculum?
- What are the areas of the curriculum that might need development?
- How effectively are curriculum policies and plans translated into practice?
- Is the same importance given to all foundation subjects?
- How is the curriculum delivered across each year group and across key stages, ensuring progress in skills, knowledge and understanding from different starting points?
- How is progress and attainment measured?
- How are pupils given opportunities to apply basic skills in your subject?
- Where is the evidence of pupils' SMSC development?
- What is the impact of the curriculum in your subject on the pupils' outcomes?

