

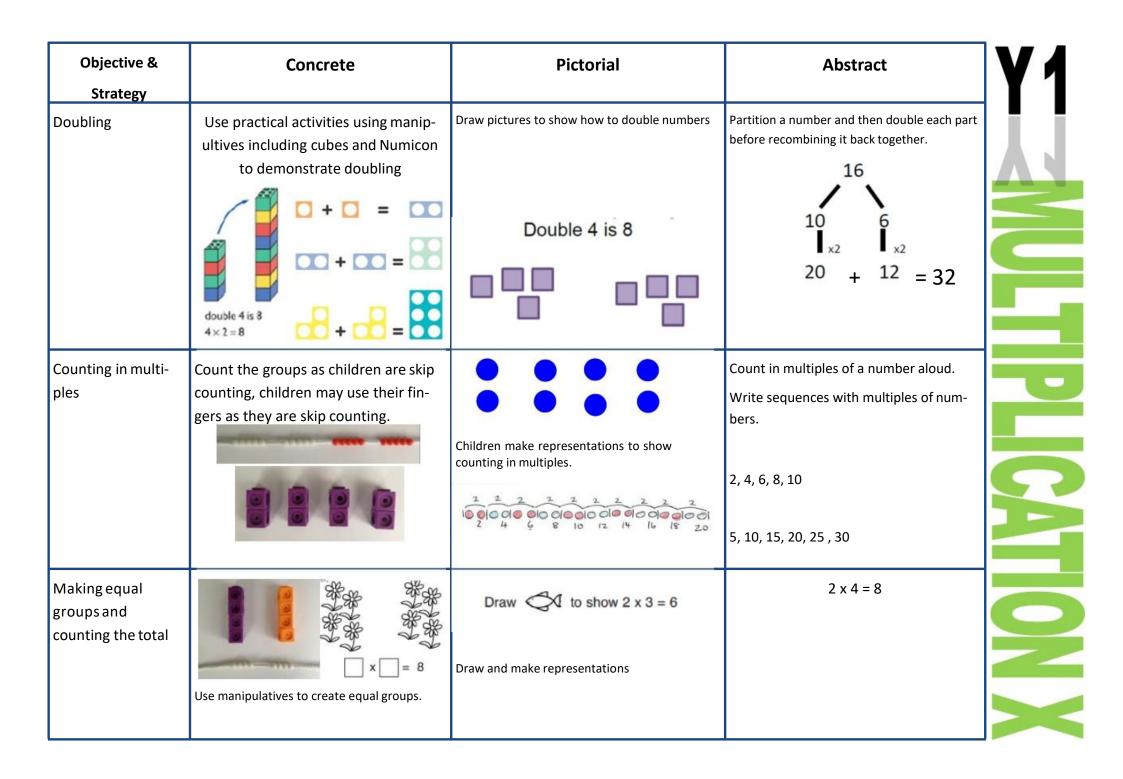
This calculation policy that can be used alongside the White Rose schemes of work. It is a working document and will be revised and amended as necessary. It shows how the four operations can be taught using the C-P-A approach and is broken down into specific objectives and strategies.

Objective & Strategy	Concrete	Pictorial	Abstract	
Combining two parts to make a whole: part- whole model	Use part part whole model. Use cubes to add two numbers together as a group or in a bar.	3 3	4 + 3 = 7 Use the part-part whole diagram as shown above to move into the abstract.	
Starting at the big- ger number and counting on	Start with the larger number on the bead string and then count on to the smaller num- ber 1 by 1 to find the answer.	12 + 5 = 17 $10 11 12 13 14 15 16 17 18 19 20$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	5 + 12 = 17 Place the larger number in your head and count on the smaller number to find your answer.	
Regrouping to make 10. This is an essential skill for column addition later.	6+5=11 Start with the bigger number and use the smaller number to make 10. Use ten frames.	Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. 9 + 5 = 14	7 + 4= 11 If I am at seven, how many more do I need to make 10. How many more do I add on now?	
Represent & use number bonds and related subtraction facts within 20	2 more than 5.	$\begin{array}{c} \hline \\ \hline $	Emphasis should be on the language '1 more than 5 is equal to 6.' '2 more than 5 is 7.' '8 is 3 more than 5.'	2

Objective &	Concrete	Pictorial	Abstract
Strategy Adding multiples of ten	50= 30 = 20	a tons + 5 tons tons 30 + 50 Use representations for base ten.	20 + 30 = 50 70 = 50 + 20 $40 + \Box = 60$
Use known number facts Part part whole	Children explore ways of making numbers within 20	20 	□ + 1 = 16 16 − 1 = □ 1 + □ = 16 16 − □ = 1
Using known facts		$\begin{array}{c} \vdots & + \vdots & = & \vdots \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	3 + 4 = 7 leads to 30 + 40 = 70 leads to 300 + 400 = 700
Bar model		7 + 3 = 10	23 25 ? 23 + 25 = 48

Objective & Strategy	Concrete	Pictorial	Abstract	V9
Add a two digit number and ones	17 + 5 = 22 Use ten frame to make 'magic ten Children explore the pattern. 17 + 5 = 22 27 + 5 = 32	Use part part whole and number line to model. 17 + 5 = 22 3 2 16 + 7 44 + 3 16 + 7 16 + 20 16 + 20	17 + 5 = 22 Explore related facts $17 + 5 = 22$ $5 + 17 = 22$ $22 - 17 = 5$ $17 - 5$ $22 - 5 = 17$	
Add a 2 digit num- ber and tens	25 + 10 = 35 Explore that the ones digit does not change	27 + 30 +10 +10 +10 27 37 47 57	27 + 10 = 37 27 + 20 = 47 27 + □ = 57	
Add two 2-digit numbers	Model using dienes , place value counters and numicon	+20 +5 Or +20 +3 +2 47 67 72 47 67 70 $72Use number line and bridge ten using partwhole if necessary.$	25 + 47 $20 + 5$ $40 + 7$ $20 + 40 = 60$ $5 + 7 = 12$ $60 + 12 = 72$	
Add three 1-digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation. + $+$ $=$ 15	4 + 7 + 6 = 10 + 7 $= 17$ Combine the two numbers that make/bridge ten then add on the third.	

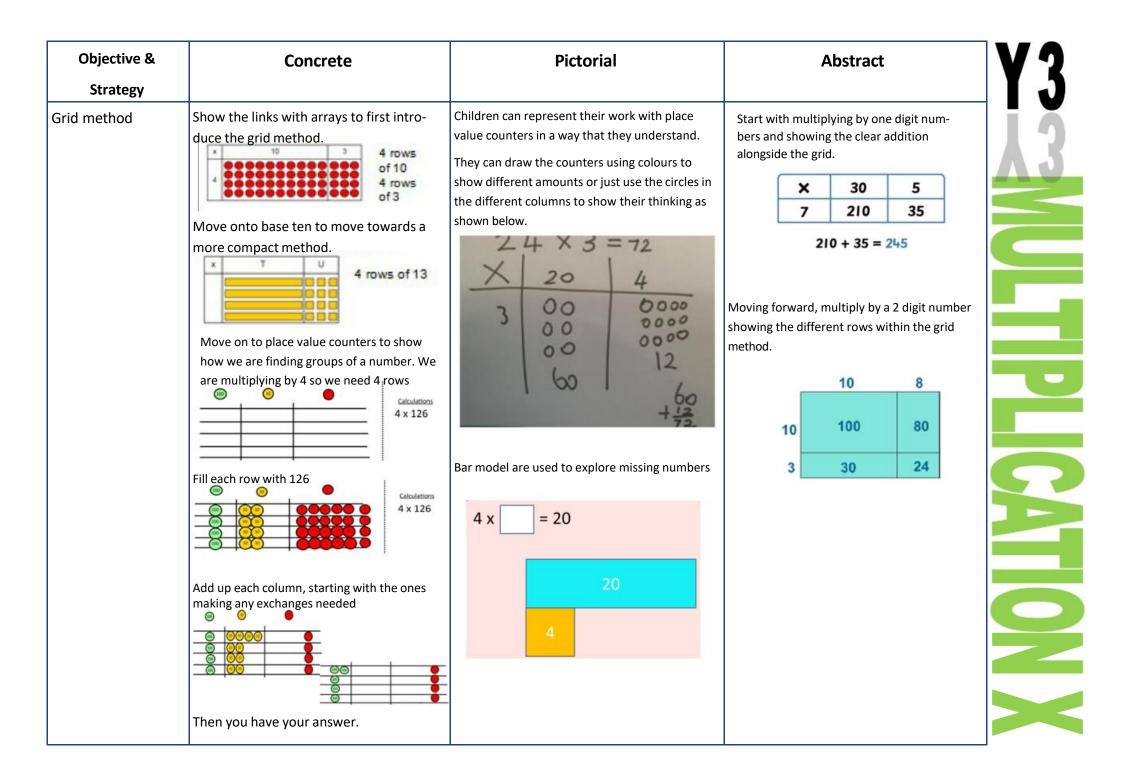
Objective &	Concrete	Pictorial	Abstract	VIC
Strategy Y4—add numbers with up to 4 digits	Children continue to use dienes or pv counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand.	The second secon	3517 + 396 3913 Continue from previous work to carry hundreds as well as tens. Relate to money and measures.	
Y5—add numbers with more than 4 digits. Add decimals with 2 dec- imal places, including money.	As year 4 tens ones tenths hundredths hu	2.37 + 81.79 <u>+ens ones +ento hundreditos</u> 00 000 0000 00 00000 00 0000 00 00000 00 0000 00 0000 00000 00 0000 00 0000 00 00000 00 0000 00 0000 00000 00000 00000 00000 00000 00000 000000	72.8 +54.6 127.4 1 1 $f \ge 23 \cdot 59$ $+ f \le 7 \cdot 55$ $f \ge 3 \mid \cdot \mid 4$	
Y6—add several num- bers of increasing com- plexity Including adding money,	As Y5	As Y5	81,059 3,668 15,301 +20,551 120,579	
measure and decimals with different numbers of decimal points.			Insert zeros for $2 3 \cdot 3 6 1$ $9 \cdot 0 8 0$ $5 9 \cdot 7 70$ $+ 1 \cdot 3 00$ $9 3 \cdot 5 1 1$	

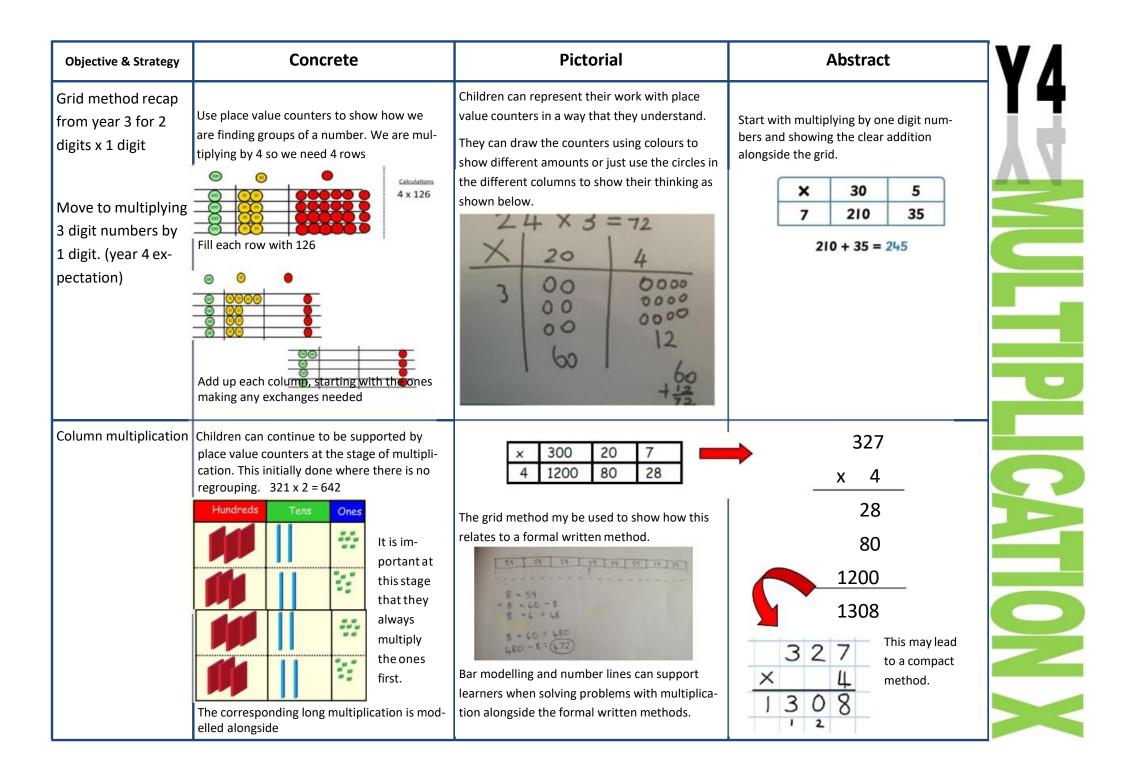

Objective & Strategy	Concrete	Pictorial	Abstract	V
Taking away ones.	Use physical objects, counters, cubes etc to show how objects can be taken away. 6-4 = 2 $4-2 = 2$	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	7—4 = 3 16—9 = 7	
Counting back	Move objects away from the group, counting backwards. Move the beads along the bead string as you count backwards.	Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?	
Find the Difference	Compare objects and amounts 7 'Seven is 3 more than four' 4 'I am 2 years older than my sister' 5 Pencils 3 Erasers 7 Lay objects to represent bar model.	Count on using a number line to find the difference. $*^{6}$ $+^{6}$ 0 1 2 3 4 5 6 7 8 9 10 11 12	Hannah has12 sweets and her sister has 5. How many more does Hannah have than her sister.?	

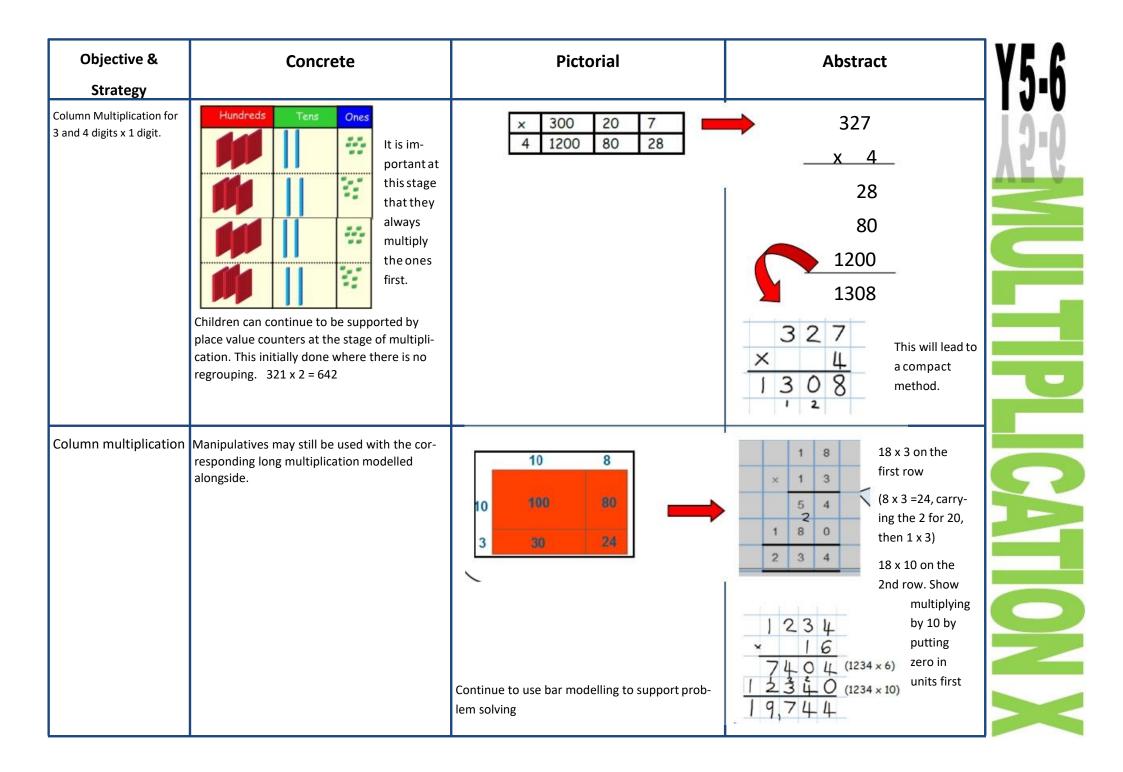
Objective & Strategy	Concrete	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20 Part Part Whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the arts, what s the other part? 10-6 = 4	Use pictorial representations to show the part.	Move to using numbers within the part whole model. 5
Make 10	14—9	13-7 $3 - 7 = 6$ $3 - 3$ Jump back 3 first, then another 4. Use ten as the stopping point.	16—8 How many do we take off first to get to 10? How many left to take off?
Bar model	5-2 = 3		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Objective & Strategy	Concrete	Pictorial	Abstract	V
Regroup a ten into ten ones	Use a PV chart to show how to change a	00000 20 - 4 =	20—4 = 16	
	ten into ten ones, use the term 'take and make'			
Partitioning to sub- tract without re-	34—13 = 21	Cross off diens to subtract	43-21 = 22	Č
grouping. 'Friendly numbers'	Use Dienes to show how to par- tition the number when subtracting without regroup- ing.		43-21-22	
Make ten strategy Progression should be crossing one ten, crossing more than one ten, cross-		76 80 90 93 'counting on' to find 'difference'	93—76 = 17	F
ing the hundreds.	34—28 Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to next ten and then the rest.		

Objective &	Concrete	Pictorial	Abstract	V٦
Strategy Column subtraction without regrouping (friendly numbers)	47—32 Use base 10 or Numicon to model	Calculations 545 -22 -22 -32 Darw representations to support under- standing	$47-24=23$ $-\frac{40+7}{20+3}$ Intermediate step may be needed to lead to clear subtraction under- standing. 32 -12 20	
Column subtraction with regrouping	Tens Units	45 -29 Tens lones 16 HIL 2000	$\begin{array}{r} 8 36 - 254 = 582 \\ \hline 300 130 6 \\ - 200 50 4 \\ \hline 500 80 2 \end{array}$ Begin by partitioning into pv columns	
	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into tten ones. Use the phrase 'take and make' for exchange.	Children may draw base ten or PV counters and cross off.	728-582=146 Then move to formal method. 4728 582 582 146	R

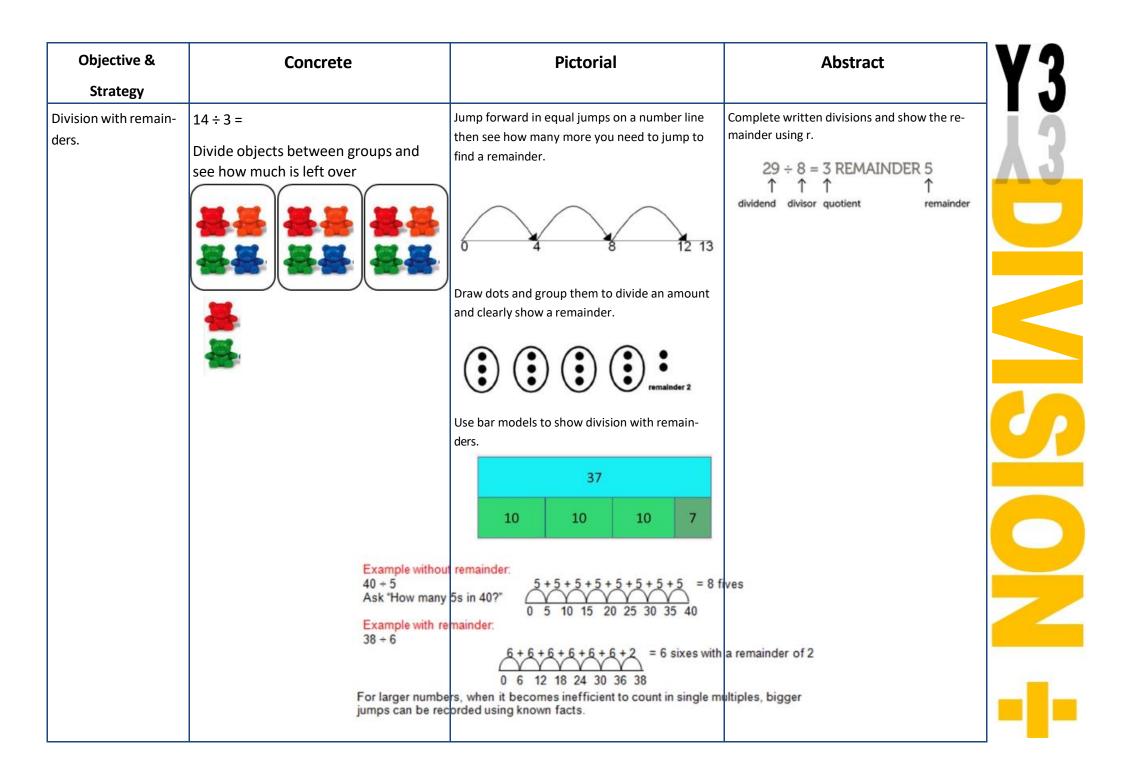

Objective & Strategy	Concrete	Pictorial	Abstract	VIC
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtrac- tion through context of money	234 - 179	Children to draw pv counters and show their exchange—see Y3	2 X 5 4 - 1 5 6 2 1 1 9 2 Use the phrase 'take and make' for ex- change	
Year 5- Subtract with at least 4 dig- its, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal	As Year 4	Children to draw pv counters and show their exchange—see Y3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TR R
Year 6—Subtract with increasingly large and more complex numbers and decimal values.			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

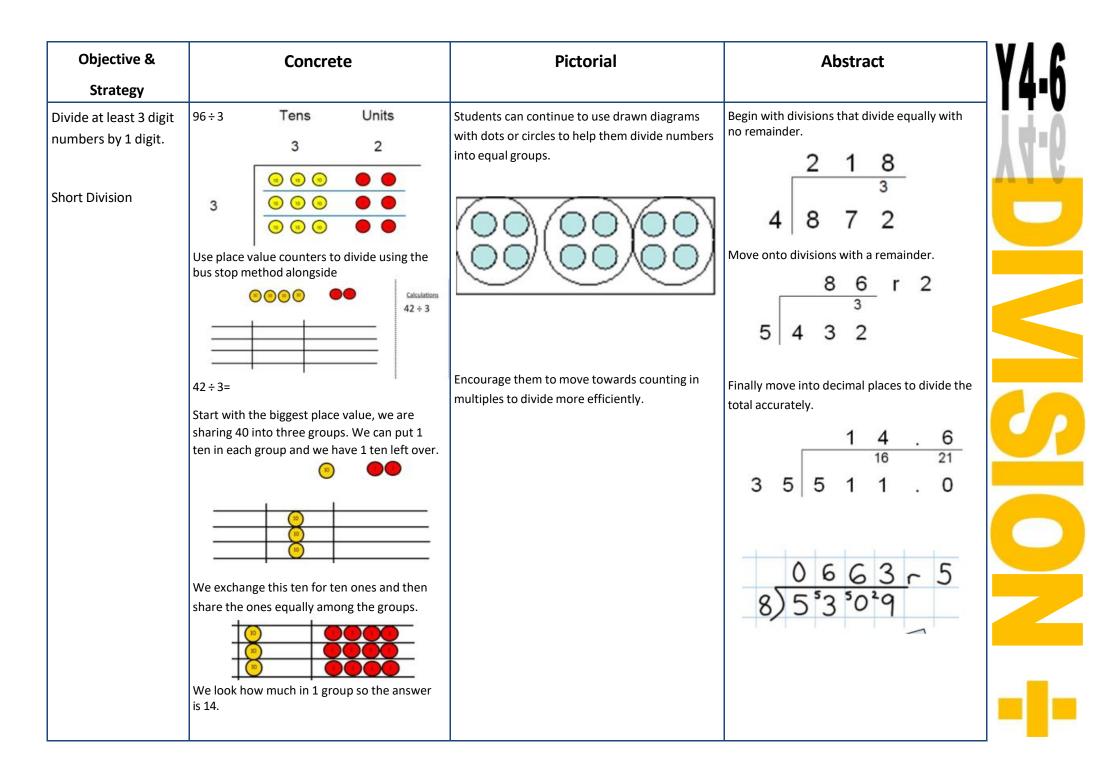


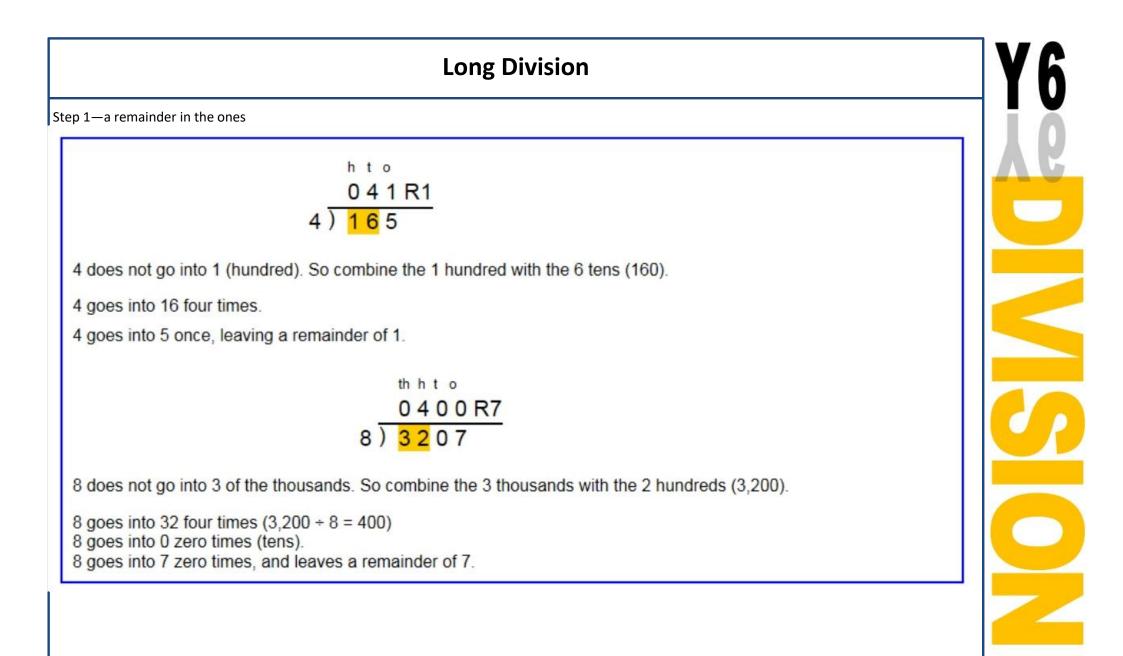

Objective &	Concrete	Pictorial	Abstract
Strategy			
Repeated addition	Use different objects to add equal groups	Use pictorial including number lines to solve problemshere are 3 sweets in one bag. How many sweets are in 5 bags altogether?	Write addition sentences to describe objects and pictures. $\underbrace{\begin{array}{c} \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
Understanding ar- rays	Use objects laid out in arrays to find the an- swers to 2 lots 5, 3 lots of 2 etc.	Draw representations of arrays to show under- standing	3 x 2 = 6 2 x 5 = 10

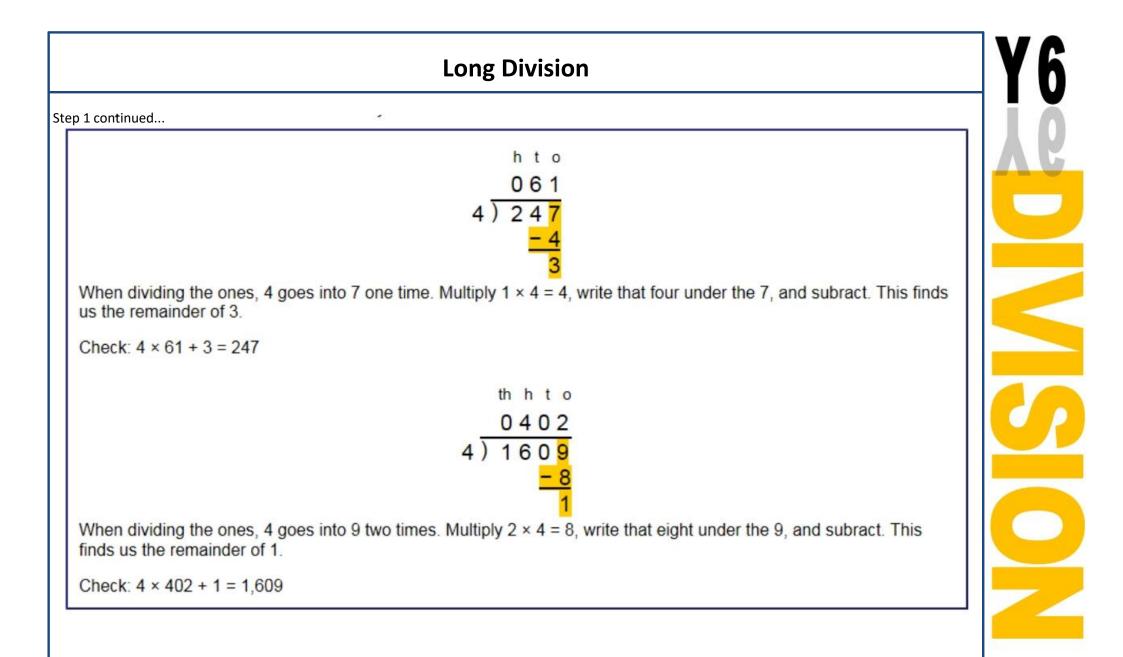
Objective &	Concrete	Pictorial	Abstract
Strategy			
Doubling	Model doubling using dienes and PV counters. 40 + 12 = 52	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together. $10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$
Counting in multi- ples of 2, 3, 4, 5, 10 from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fin- gers as they are skip counting. Use bar models. 5+5+5+5+5+5+5+5=40	Number lines, counting sticks and bar models should be used to show repre- sentation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. 0, 2, 4, 6, 8, 10 0, 3, 6, 9, 12, 15 0, 5, 10, 15, 20, 25, 30 $4 \times 3 =$

Objective &	Concrete	Pictorial	Abstract	V٩
Strategy				14
Multiplication is commutative	Create arrays using counters and cubes and Numicon.	Use representations of arrays to show different calculations and explore commutativity.	12 = 3×4 12 = 4×3 Use an array to write multiplication sentences and reinforce repeated addition. 00000 5 + 5 + 5 = 15 3 + 3 + 3 + 3 + 3 = 15 $5 \times 3 = 15$ $3 \times 5 = 15$	
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.		$\begin{vmatrix} 4 & 2 \\ \hline 4 & 2 \\ \hline \times \hline = \hline \\ \hline \times \hline = \hline \\ \hline \div \hline = \hline \\ \hline \div \hline = \hline \end{vmatrix}$	$2 \times 4 = 8$ $4 \times 2 = 8$ $8 \div 2 = 4$ $8 \div 4 = 2$ $8 = 2 \times 4$ $8 = 4 \times 2$ $2 = 8 \div 4$ $4 = 8 \div 2$ Show all 8 related fact family sentences.	SATION X




Objective &	Concrete	Pictorial	Abstract
Strategy			
Multiplying decimals			Remind children that the single digit belongs in the units column. Line up the decimal
up to 2 decimal plac- es by a single digit.			points in the question and the answer.
, , ,			
			2.10
			3 · 1 9
			× 8
			25.52


Objective &	Concrete	Pictorial	Abstract	VA
Strategy				
Division as sharing		Children use pictures or shapes to share quanti- ties.	12 shared between 3 is	
Use Gordon ITPs for		\$\$ \$ \$	4	Α٩
modelling		\$\$ \$ \$		
		8 shared between 2 is 4		
		Sharing:		\leq
		4 4 4 12 shared between 3 is 4		
	10			
				C
	I have 10 cubes, can you share them equally in 2 groups?			


Objective &	Concrete	Pictorial	Abstract	V
Strategy				
Division as sharing	10,	Children use pictures or shapes to share quanti- ties. 3 3 3 3 3 3 3 3 3 3	12 ÷ 3 = 4	C K
	I have 10 cubes, can you share them equally in 2 groups?	understanding.		
		12÷4=3		
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use number lines for grouping	28 ÷ 7 = 4 Divide 28 into 7 groups. How many are in each group?	
		12 ÷ 3 = 4 Think of the bar as a whole. Split it into the num- ber of groups you are dividing by and work out how many would be within each group. 20		
	0 5 10 15 20 25 30 35	20 ? 20 \div 5 = ? 5 x ? = 20		-

Objective & Strategy	Concrete	Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6 = 4$	Continue to use bar modelling to aid solving division problems. 20 20 \div 5 = ? 5 x ? = 20	How many groups of 6 in 24? 24 ÷ 6 = 4
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. Eg 15 ÷ 3 = 5 5 × 3 = 15 15 ÷ 5 = 3 3 × 5 = 15	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $7 \times 4 = 28$ $4 \times 7 = 28$ $28 \div 7 = 4$ $28 \div 4 = 7$ $28 = 7 \times 4$ $28 = 4 \times 7$ $4 = 28 \div 7$ $7 = 28 \div 4$

Long Division

Step 2—a remainder in the tens

1. Divide.	2. Multiply & subtract.	3. Drop down the next digit.
2 2) <u>5</u> 8	t o 2 2) <u>5</u> 8 <u>-4</u> 1	$\begin{array}{r} t \circ \\ 29 \\ 2 \overline{)58} \\ \underline{-4} \\ 18 \end{array}$
Two goes into 5 two times, or 5 tens ÷ 2 = 2 whole tens but there is a remainder!	To find it, multiply $2 \times 2 = 4$, write that 4 under the five, and subtract to find the remainder of 1 ten.	Next, drop down the 8 of the ones next to the leftover 1 ten. You combine the remainder ten with 8 ones, and get 18.

1. Divide.	2. Multiply & subtract.	3. Drop down the next digit.
t o 2 <mark>9</mark> 2) 5 8 -4 1 8	t o 29 2)58 -4 18 -18 0	t o 29 2)58 <u>-4</u> 18 <u>-18</u> 0
Divide 2 into 18. Place 9 into the quotient.	Multiply $9 \times 2 = 18$, write that 18 under the 18, and subtract.	The division is over since there are no more digits in the dividend. The quotient is 29.

Long Division			
Step 2—a remainder in any of the place values	1. Divide.	2. Multiply & subtract.	3. Drop down the next digit.
	h t o <mark>1</mark> 2)278	h t o 1 2) <mark>2</mark> 7 8 -2 0	h t o 1 8 2) 2 7 8 -2 1 0 7
	Two goes into 2 one time, or 2 hundreds ÷ 2 = 1 hundred.	Multiply $1 \times 2 = 2$, write that 2 under the two, and subtract to find the remainder of zero.	Next, drop down the 7 of the tens next to the zero.
	Divide.	Multiply & subtract.	Drop down the next digit.
	h t o 1 3 2) 2 7 8 -2 0 7 Divide 2 into 7. Place 3 into the quotient.	h t o 13 2)278 -2 07 -6 1 Multiply 3 × 2 = 6, write that 6 under the 7, and subtract to find the	h t o 13 2)278 -2 07 -6 18 Next, drop down the 8 of the ones next to the 1 leftover ten.
	1. Divide.	remainder of 1 ten. 2. Multiply & subtract.	3. Drop down the next digit.
	h t o 1 3 9 2) 2 7 8 <u>-2</u> 0 7 <u>-6</u> 1 8	h t o <u>139</u> 2)278 <u>-2</u> 07 <u>-6</u> <u>18</u> <u>-18</u> 0	hto 139 2)278 <u>-2</u> 07 <u>-6</u> 18 <u>-18</u> 0
	Divide 2 into 18. Place 9 into the quotient.	Multiply 9 × 2 = 18, write that 18 under the 18, and subtract to find the remainder of zero.	There are no more digits to drop down. The quotient is 139.